skip to main content


Search for: All records

Creators/Authors contains: "Faria, João P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Abstract

    Measured spectral shifts due to intrinsic stellar variability (e.g., pulsations, granulation) and activity (e.g., spots, plages) are the largest source of error for extreme-precision radial-velocity (EPRV) exoplanet detection. Several methods are designed to disentangle stellar signals from true center-of-mass shifts due to planets. The Extreme-precision Spectrograph (EXPRES) Stellar Signals Project (ESSP) presents a self-consistent comparison of 22 different methods tested on the same extreme-precision spectroscopic data from EXPRES. Methods derived new activity indicators, constructed models for mapping an indicator to the needed radial-velocity (RV) correction, or separated out shape- and shift-driven RV components. Since no ground truth is known when using real data, relative method performance is assessed using the total and nightly scatter of returned RVs and agreement between the results of different methods. Nearly all submitted methods return a lower RV rms than classic linear decorrelation, but no method is yet consistently reducing the RV rms to sub-meter-per-second levels. There is a concerning lack of agreement between the RVs returned by different methods. These results suggest that continued progress in this field necessitates increased interpretability of methods, high-cadence data to capture stellar signals at all timescales, and continued tests like the ESSP using consistent data sets with more advanced metrics for method performance. Future comparisons should make use of various well-characterized data sets—such as solar data or data with known injected planetary and/or stellar signals—to better understand method performance and whether planetary signals are preserved.

     
    more » « less
  3. ABSTRACT

    The analysis of photometric time series in the context of transiting planet surveys suffers from the presence of stellar signals, often dubbed ‘stellar noise’. These signals, caused by stellar oscillations and granulation, can usually be disregarded for main-sequence stars, as the stellar contributions average out when phase-folding the light curve. For evolved stars, however, the amplitudes of such signals are larger and the timescales similar to the transit duration of short-period planets, requiring that they be modelled alongside the transit. With the promise of TESS delivering of the order of ∼105 light curves for stars along the red giant branch, there is a need for a method capable of describing the ‘stellar noise’ while simultaneously modelling an exoplanet’s transit. In this work, a Gaussian process regression framework is used to model stellar light curves and the method validated by applying it to TESS-like artificial data. Furthermore, the method is used to characterize the stellar oscillations and granulation of a sample of well-studied Kepler low-luminosity red giant branch stars. The parameters determined are compared to equivalent ones obtained by modelling the power spectrum of the light curve. Results show that the method presented is capable of describing the stellar signals in the time domain and can also return an accurate and precise measurement of νmax, i.e. the frequency of maximum oscillation amplitude. Preliminary results show that using the method in transit modelling improves the precision and accuracy of the ratio between the planetary and stellar radius, Rp/R⋆. The method’s implementation is publicly available.1

     
    more » « less